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ABSTRACT 

 

This thesis focus on the lattice properties of vector spaces. First of all, to help our subject, we 

examined what Riesz space is and some of its properties. Then, we showed some lattice 

properties and from these properties we proved the widely used theorems in Riesz spaces. 

Later, we examined some important definitions such as ideal, band in Riesz space and from 

here we showed some theorems and lemmas that were proved based on those definitions. 

Finally, we end the thesis with a short section about order completeness and Riesz algebra. 
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1.  THE LATTİCE STRUCTURE OF RİESZ SPACES 

 

1.1. Elementary Properties of Riesz Spaces 

 

A real vector space E with an order relation ≤ (also known as a reflexive, antisymmetric, 

transitive relation ≤) that is compatible with the algebraic structure of E in the sense that it 

has the following two properties is referred to as an ordered vector space: 

(i) If x ≤ y, then x + z ≤ y + z holds for every z ∈ E. 

(ii) ) If x ≤ y, then αx ≤ αy  holds for each α ≥ 0. 

 

The zero element of a vector space will be represented by the number 0. The elements x of E 

is called positive vectors of E whenever x ≥ 0. The set of all positive vectors of E will be denoted 

by E+. E+ = { x ∈ E : x ≥ 0 } is called a cone ( or positive cone) of E. 

 

A nonempty subset A of E is said to have a supremum if there is some x ∈ E that satisfies       a 

≤ x for all a ∈ A and such that whenever a ≤ y holds for any y ∈ E and all a ∈ A, then x ≤ y. The 

supremum of A (or the least upper bound of  A) is defined by supA . The infimum of A (or 

greatest lower bound of A) is defined by infA, has a similar definition. 

 

Definition 1.1.1. An ordered vector space E is called a Riesz space(or vector lattice) if sup{x,y} 

and inf{x,y} both exist in E for every x,y ∈ E. 

 

We will use x∨y to represent the supremum of the set {x,y}. Similarly, x∧y represents the 

infimum of the set {x,y}. That means sup{x,y} = x∨y and inf{x,y} = x∧y. 

 

Let x ∈ E be a Riesz space then the positive part of x is defined by x+= x∨0, the negative part of 

x is defined by x-= (-x)∨0, the absolute value(or modulus) of x defined by |x|= (-x)∨x. 

 

Theorem 1.1.2. (Lattice Identities). Let E be a Riesz space and x, y, z ∈ E. Then, the following 

identities are true: 
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(1)   x∨y = -[(-x)∧(-y)] 

(2)   x∧y = -[(-x)∨(-y)] 

(3)   x + (y∨z) = (x + y)∨(x + z)  and  x + (y∧z) = (x + y)∧(x + z) 

(4)   x - (y∨z) = (x - y)∨(x - z)  and  x - (y∧z) = (x - y)∧(x - z) 

(5)    x∨y = (x - y)++ y = (y – x)+ + x 

(6)   α(x∨y) = (αx)∨(αy)  and  α(x∧y) = (αx)∧(αy) for all α ≥ 0 

(7)   |αx| = |α||x| for all α ∈ ℝ 

(8)   x∨y = 
1

2
 (x + y + |x - y|)  and  x∧y =  

1

2
 (x + y – |x - y|)  

(9)   x + y = x∨y + x∧y 

(10) x = x+ - x-  and  x+∧ x-= 0 

(11) |x| = x+ + x-   

(12) |x - y| = x∨y - x∧y 

(13) |x + y|∨|x – y| = |x| + |y| 

(14) |x|∨|y| =  
1

2
 (|x + y| + |x – y|)  and  |x|∧|y| =  

1

2
 (|x + y| - |x – y|)  

 

Proof.  (1) We know that x ≤ x∨y and y ≤ x∨y. Multiply with (-1) both side these equations and 

the we get  -x ≥ -(x∨y), -y ≥ -(x∨y). That means (-x)∧(-y) ≥ -( x∨y). On the other hand, assume 

that -x ≥ z, -y ≥ z. Then x ≤ -z, y ≤ -z. From here, we get -z is an upper bound of the set {x,y} 

such that x∨y ≤ -z(or z ≤ -(x∨y)). This shows that –(x∨y) is the infimum of the set {-x,-y}. So,      

(-x)∧(-y) = -(x∨y) or x∨y = -[(-x)∧(-y)].    

 

(2) This identity can be proved similarly by looking at the proof in (1). 

 

(3) Let a = y∨z. We know that y ≤ a and z ≤ a. Clearly, x + y ≤ x + a and x + z ≤ x + a. From here, 

we get (x + y)∨(x + z) ≤ x + y∨z. Conversely, let b = (x + y)∨(x + z). Then, x + y ≤ b and x + z ≤ b. 

From here we get y ≤ (-x) + b and z ≤ (-x) + b. This shows that  y∨z ≤ (-x) + (x + y)∨(x + z) or          

x + y∨z ≤ (x + y)∨(x + z). From inequalities, we get x + (y∨z) = (x + y)∨(x + z). The other identity 

can be proven in a similiar manner. 

 

(4) The validity of these identities can be made from the proof (1), (2) and (3). 
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(5) We will use equation x+= x∨0 to prove the identity 

(x - y)++ y = (x - y)∨0 + y = [(x – y) + y]∨(0 + y) = x∨y 

(y – x)+ + x = (y – x)∨0 + x = [(y – x ) + x]∨(0 + x) = y∨x = x∨y  

 

(6) For α = 0, it is clear. Assume that α ≥ 0. We know that x ≤ x∨y and y ≤ x∨y. From here, we 

get αx ≤ α(x∨y) and αy ≤ α(x∨y). That means (αx)∨(αy) ≤ α(x∨y). Then assume that z ≥ αx and 

z ≥ αy. It follows that α-1z ≥ x and α-1z ≥ y. Hence we get α-1z ≥  x∨y or z ≥ α(x∨y). This shows 

that α(x∨y) is the supremum of the set {αx, αy}. Consequently we get α(x∨y) = (αx)∨(αy). A 

similar method can be used to reveal the second identity. 

 

(7) To prove this identity we will use |x|= x∨(-x).  

For α ≥ 0, we get |αx| = (αx)∨(-αx) = α[x∨(-x)] = |α||x|.  

For α < 0, we get |αx| = (αx)∨(-αx) = [(-α)(-x)]∨(-αx) = (-α)[(-x)∨x] = |α||x|. 

 

(8) We will use |x|= x∨(-x) to prove the first identity.  

x + y + |x – y| = x + y + (x – y)∨(y – x) = (x + y + x – y)∨(x + y + y – x) = (2x)∨(2y) = 2(x∨y). Hence, 

we get x∨y = 
1

2
 (x + y + |x - y|). The other identity can be proved in a similar manner. 

 

(9) The identity is obtained by adding the identities in (8). 

 

(10) For the first identity we will use (9), then we get, 

x = x + 0 = x∨0 + x∧0 = x∨0 - (-x)∨0 = x -x-. For the second identity we will use the first identity, 

then we get  x+∧ x- = (x+ - x-)∧0 + x- = x∧0 + x- = -[(-x)∨0] + x- =(-x-) + x- = 0. 

 

(11) Using the definition of absolute value, then we get  

|x|= x∨(-x) = (2x)∨0 – x = 2(x∨0) – x = 2x+ - (x+ - x-) = x+ + x-. 

 

(12) From (8) we get  

x∨y - x∧y = 
1

2
 (x + y + |x - y|) - 

1

2
 (x + y – |x - y|) 

                            = 
1

2
(x + y +|x – y| - x – y + |x – y|) = |x – y|. 
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(13) Observe that  |x + y|∨|x – y| = [(x + y)∨(– x – y)] ∨ [(x –  y)∨(y – x)] 

                                                              = [(x + y)∨(x – y)] ∨ [(– x –  y)∨(y – x)] 

                                                              = [x + y∨(– y)] ∨ [– x + (–y)∨y] 

                                                              = [x + |y|] ∨ [– x + |y|] 

                                                              = [x∨(– x)] + |y| 

                                                             = |x| + |y|. 

 

(14) For the first identity we will use (8), then we get   

|x + y| + |x – y| = (x + y)∨(– x – y) + |x – y| 

                              = (x + y +|x – y|)∨(– x – y + |x – y|) 

                              = 2([x∨y]∨[(–x)∨(–y)]) 

                              = 2([x∨(–x)]∨[y∨(–y)]) 

                              = 2(|x|∨|y|). 

From here |x|∨|y| =  
1

2
 (|x + y| + |x – y|) . 

For the second identity we will use (9), (12), and (13), then we get 

|x + y| - |x – y| = |x + y|∨| x – y| – |x + y|∧| x – y| 

                             = |x + y|∨| x – y| – (|x + y| + | x – y| – |x + y|∨| x – y|) 

                             = 2(|x + y|∨| x – y|) – (|x + y| + | x – y|) 

                             = 2(|x| + |y|) – 2(|x|∨|y|) 

                             =2(|x|∧|y|). 

From here |x|∧|y| =  
1

2
 (|x + y| - |x – y|). ∎ 

 

Lemma 1.1.3 (The Infinite Distributive Law). Let A be a nonempty subset of a Riesz space E. If 

supA exists, then for every vector x ∈ E there is  sup { x∧a : a ∈ A } and                                             

x∧supA = sup { x∧a : a ∈ A }. Similarly, if infA exists, then for every vector x ∈ E there is                   

inf { x∨a : a ∈ A } and x∨infA = inf { x∨a : a ∈ A }. 

 

Proof. Assume that supA exists. Let y = supA and x ∈ E. Then, x∧a ≤  x∧y for every  a ∈ A. From 

here, let b ∈ E be an upper bound of the set x∧A = { x∧a : a ∈ A }. This means x∧a ≤ b holds for 

every a ∈ A. We know that x + y = x∨y + x∧y is true in Riesz spaces. Using this lattice identity, 

we get x + a - x∨a = x∧a ≤ b for every a ∈ A. From here we have a ≤ b +  x∨a – x ≤ b + x∨y – x 
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for every a ∈ A. Then, y ≤ b + x∨y – x. From here we get x∧supA = sup { x∧a : a ∈ A }. Other 

formula can be proven in this way.∎ 

 

We will present a classical identity in Riesz spaces known as Birkhoff’s identity which is a direct 

application of the distrubituve laws. 

 

Corollary 1.1.4 (Birkhoff’s Identity).  Let E be a Riesz space and x, y, z ∈ E. Then,  

|x∨z  –  y∨z | + |x∧z  –  y∧z | = |x – y| holds. 

 

Proof.  To prove this identity we will use the lattice identities (9) and (12) of Theorem 1.1.2. 

with the distributive laws, then we get 

|x∨z  –  y∨z | + |x∧z  –  y∧z | = [(x∨z)∨(y∨z)  – (x∨z)∧(y∨z)] + [(x∧z)∨(y∧z) –  (x∧z)∧(y∧z)] 

                                                     = [z∨(x∨y) – z∨(x∧y)] + [z∧(x∨y) – z∧(x∧y)] 

                                                     = [z∨(x∨y) + z∧(x∨y)] – [z∨(x∧y) + z∧(x∧y)] 

                                                     =[z + x∨y] – [z + x∧y] 

                                                     = x∨y – x∧y 

                                                     = |x – y|. ∎ 

 

Theorem 1.1.5 (Lattice Inequalities). In Riesz spaces the following lattice inequalities are true. 

(1) (The Triangle Inequality) Let x and y be arbitrary vectors in a Riesz space, then 

│|x| – |y|│ ≤ |x + y| ≤ |x| + |y| 

(2) (Birkhoff’s Inequalities) Let x, y, and z be arbitrary vevtors in a Riesz space, then 

| x∨z – y∨z| ≤ |x – y| and  | x∧z –  y∧z| ≤ |x – y| 

(3) Let x and y be arbitrary vectors in a Riesz space satisfy x ≤ y, then  

                                                               x+ ≤ y+  and  y- ≤ x-. 

(4) Let x, x1, x2, … , xn be positive vectors in a Riesz space, then 

x∧(x1 + x2 + … + xn) ≤ x∧x1 + x∧x2 + … + x∧xn. 

(5) Let x1, x2, … , xn  be vectors in a Riesz space, then 

n(x1
+∧ … ∧ xn

+) = n(x1∧ … ∧xn)+ ≤ (x1 + … + xn)+. 

 

Proof.  (1) Clearly, x + y ≤ |x| + |y| and –x – y = – (x + y) ≤ |x| + |y|. From here, we get                   

|x + y| = (x + y)∨[-(x + y)] ≤ |x| + |y|. For the other side, we have                                                                   
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|x| = |(x + y) – y| ≤ |x + y| + |y| and hence we get |x| - |y| ≤ |x + y|. Also we get                             

|y| = |(y + x) + (– x)| ≤ |y + x| + |- x| = |y + x| + |x| or |y| - |x| = - (|x| - |y|) ≤ |y + x|=             

|x + y|. So │|x| – |y|│ ≤ |x + y|. Thus, │|x| – |y|│ ≤ |x + y| ≤ |x| + |y| is true. 

 

(2) Notice that 

 x∨z – y∨z = (x - z)∨0 + z – (y∨z)                                           

                   = (x – z)+ + z + [(-y)∧(-z)] 

                   = (x – z)+ + (z-y)∧0 

                   = (x – z)+ - [(y - z)∨0] 

                   = (x – z)+ – (y – z)+ 

                   = [(x – y) + (y – z)]+  –  (y – z)+ 

                   ≤ (x – y)+ + (y – z)+  –  (y – z)+ 

                   = (x – y)+ 

                   ≤ |x – y| 

y∨z – x∨z = (y - z)∨0 + z – (x∨z)                                           

                   = (y – z)+ + z + [(-x)∧(-z)] 

                   = (y – z)+ + (z-x)∧0 

                   = (y – z)+ - [(x - z)∨0] 

                   = (y – z)+ – (x – z)+ 

                   = [(y – x) + (x – z)]+  –  (x – z)+ 

                   ≤ (y – x)+ + (x – z)+  –  (x – z)+ 

                   = (y – x)+ 

                   ≤ |y – x| = |x – y| 

So, | x∨z – y∨z| ≤ |x – y|. The other inequality can be proven in a similar way. 

 

(3) Let x ≤ y. In that case x ≤ y ≤ y∨0 = y+ and 0 ≤ y+. From here x+ = x∨0 ≤ y+. For other inequality 

we have -y ≤ -x. Then -y ≤ -x ≤ (-x)∨0 = x- and 0 ≤ x-. From here y- = (-y)∨0 ≤ x-. The proof of 

these inequalities is finished. 

 

(4) Let y = x∧(x1 + x2). Then y ≤ x1 + x2 and from here we have y - x1 ≤ x2. Likewise we get                  

y - x1 ≤ y ≤ x2. So y - x1 ≤ x∧x2. This means y - x∧x2 ≤ x1 and hence y - x∧x2 ≤ y ≤ x. From the 

inequality y - x∧x2 ≤ x∧x1 or y ≤ x∧x1 + x∧x2. Put y in the equality then we have                                
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x∧(x1 + x2) ≤ x∧x1 + x∧x2. The general case can be proven by induction. 

 

(5) From this inequality n(x1∧ … ∧xn) ≤ x1 + … + xn we can get n(x1∧ … ∧xn)+ ≤ (x1 + … + xn)+. For 

other side we have n(x1
+∧ … ∧ xn

+) = n[(x1∨0) ∧ (x2∨0) ∧ … ∧ (xn∨0)] 

                                                              = n[(x1∧x2∧ … ∧xn)∨0] 

                                                              = n(x1∧x2∧ … ∧xn)+. 

So, we get n(x1
+∧ … ∧ xn

+) = n(x1∧ … ∧xn)+ ≤ (x1 + … + xn)+. ∎ 

 

Definition 1.1.6. Let E be a Riesz space and x, y ∈ E. x and y are called disjoint (or orthogonal) 

if |x|∧|y| = 0. The symbol xꓕy represents orthogonality of x and y.[ xꓕy ⇔ |x|∧|y| = 0] 

Let A and B be nonempty subsets of a Riesz space. A and B are called disjoint(or orthogonal) if 

|a|∧|b| = 0 for all a ∈ A and b ∈ B. The symbol AꓕB represents orthogonality of A and B. 

 

Lemma 1.1.7 (Disjointness Properties). Let E be a Riesz space and x, y, z ∈ E. Then the 

followings are true: 

(1) If xꓕy and xꓕz hold in Riesz space E, then xꓕ(αy + βz) holds for all α, β ∈ ℝ. 

(2)  x and y are disjoint if and only if |x + y| = |x – y|. 

(3) If  xꓕy holds in E, then |x + y| = |x – y| = |x| +  |y| = │|x| – |y|│ = |x|∨|y|. 

(4) Every subset of a Riesz space consisting of pairwise disjoint nonzero vectors is linearly 

independent. 

 

Proof. (1) Let xꓕy, xꓕz and α, β ∈ ℝ. By the definition of the disjointness, we have        

|x|∧|y| = 0 and |x|∧|z| = 0. Then, we get 

0 ≤ |x| ∧ |αy + βz|  

   ≤ |x| ∧ (|αy| + |βz|) = |x| ∧ (|α||y| + |β||z|) 

   ≤ |x| ∧ (|α||y|) + (|x| ∧ (|β||z|) 

   ≤ (1 + |α|)|x|∧(1 + |α|)|y| + (1 + |β|)|x|∧(1 + |β|)|z| 

   = (1 + |α|)[|x|∧|y|] + (1 + |β|)[|x|∧|z|] 

   = (1 + |α|)0 + (1 + |β|)0 = 0. 

So we found |x| ∧ |αy + βz| = 0. This implies xꓕ(αy + βz).  

 

(2) Using the second identity in (14) of Theorem 1.1.2. we know|x|∧|y| =  
1

2
 (|x + y| - |x – y|) 
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is true in a Riesz space. From here, clearly xꓕy are disjoint if and only if |x + y| = |x – y|. From 

here we infer that xꓕy if and only if |x + y| = |x – y| is true. 

 

(3) Let If  xꓕy holds in Riesz space E. We know that |x + y| = |x – y| is true by part (2). Let apply 

the same result to the vectors |x| and |y| then we get │|x| – |y|│ = │|x| + |y|│= |x| +|y| = 

|x|∨|y|. Then notice that from the identity in part (13) of Theorem 1.1.2. yields  

|x + y| = |x – y| = |x| +  |y| = │|x| – |y|│ = |x|∨|y|.  

 

(4) Let x1, … ,xn be pairwise disjoint nonzero vectors in a Riesz space and α1x1 + … + αnxn =0. By 

(1) and (3), we have 0 =  |α1x1 + … + αnxn| = |α1x1| + … + |αnxn| = |α1||x1| + … + |αn||xn|. 

From here |αi||xi| = 0 for every i. We know |xi| > 0 for every i, so we get |αi| = 0 or αi = 0 for 

every i = 1, … ,n. As a result the nonzero vectors x1, … ,x2 are linearly independent. ∎ 

 

Theorem 1.1.8 (The Riesz Decomposition Property). Let E be a Riesz space and the inequality 

|x| ≤ | y1 + y2 + … + yn | holds. Then there exist vectors x1, … ,xn ∈ E satisfying |xi| ≤ |yi|for 

every i = 1, … ,n and x = x1, … ,xn .If the vector x is positive then the vectors xi can be choosen 

positive. 

 

Proof. Assume that |x| ≤ |y1 + y2|. Then take x1 = [x∨(-|y1|)]∧|y1|. From the inequalities              

-|y1| ≤ x ∨ (-|y1|) and -|y1| ≤ |y1|, it follows that -|y1| ≤ x1 or -x1 ≤ |y1|. Moreover, from             

x1 ≤ |y1|, we get |x1| = (-x1) ∨ x1 ≤ |x1| (and if x positive then 0 ≤ x1 ≤ x holds). Now take               

x2 = x – x1, then we get x2 = x – [x ∨ (-|y1|)]∧|y1| = [0∧(x + |y1|)]∨ (x - |y1|). On the other side 

, |x| ≤ |y1| + |y2| implies –|y1| – |y2| ≤ x ≤ |y1| + |y2| which we obtain                                                        

-|y2| = (-|y2|)∧0 ≤ (x + |y1|)∧0 ≤ x2 ≤ 0∨(x - |y1|) ≤ |y2|. Thus we get |x2| ≤ |y2|. The general 

case can be proven by induction.∎ 

 

Definition 1.1.9. Let A be a subset of a Riesz space E. A is called solid if |x| ≤ |y| for some          

y ∈ A implies x ∈ A. If every subset A of E is contained in a smallest solid set, then it is called 

solid hull of A and indicated by Sol(A). From here, we see  

Sol(A) = { y ∈ E: ꓱx ∈ A such that |y| ≤ |x|} 

Every solid set A is a balanced set if x ∈ A , then αx ∈ A for every α ∈ ℝ with |α| ≤ 1. 

A subset A in a vector space is called convex if αx + (1 – α)y ∈ A for all x, y ∈ A and 0 ≤ α ≤ 1. 
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Definition 1.1.10. A is called a directed set if for α, β ∈ A there is a γ ∈ A such that α≤γ and 

β≤γ. 

 

Definition 1.1.11. A net of a set X is a mapping x : A → X from a directed set A to X. x(α) will 

be denoted by xα and the net x : A → X denoted by {xα}.  

 

Definition 1.1.12. If  xα ≤ xβ whenever α ≤ β then a net {xα} in a Riesz space is called increasing 

net(in symbols  xα↑). If xβ ≤ xα whenever α ≤ β then a net {xα} in a Riesz space is called 

decreasing net(in symbols xα↓). 

 

The notation xα↑x means that the net {xα} is an inreasing net and supremum of the set                    

{ xα : α ∈ A} exists and sup{xα} = x. The notation xα↓x means that the net {xα} is a decreasing 

net and infimum of the set { xα : α ∈ A} exists and inf{xα} = x.  

 

Definition 1.1.13 (Order Convergence). A net {xα} in a Riesz space E is order convergent to a 

element x ∈ E (xα→x) if there exists a set {yα} of A such that |xα – x| ≤ yα↓0. The element x is 

said to be the order limit of the net {xα}.  

 

Lemma 1.1.14. A net in a Riesz space can have only one order limit. 

 

Proof. Assume that the net {xα} has two order limits in a Riesz space. Let xα→x and xα→t. Using 

the definition of the order convergence, suppose that {yα} and {zα} be two nets satisfying         

|xα – x| ≤ yα↓0 and |xα – t| ≤ zα↓0. Then for every α we get                                                                                  

|x – t| ≤ |x – xα| + |xα – t| ≤ yα + zα.  

Since yα + zα↓0, it follows that |x – t|= 0, from here we get x – t = 0. So, x = t.∎ 

 

Definition 1.1.15. A subset A of a Riesz space E is called order closed if {xα} ⊆ A and xα→x in E 

that x ∈ A, then A is order closed if it contains its order limits. Similarly, if a subset A includes 

its sequential order limits, it is said to be σ-order closed. 

 

Lemma 1.1.16. A solid subset A of a Riesz space E is order closed if and only if {xα} ⊆ A and       
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0 ≤ xα↑x imply x ∈ A. 

 

Proof. Assume that solid A satisfies the stated property and if {xα} ⊆ A then xα→x. Choose a 

net {yα} satisfying yα↓0 and |xα – x| ≤ yα for every α. From here we get 0 ≤ (|x| - yα)+↑|x| and 

(|x| - yα)+ ≤ |xα| for every α. This implies {(|x| - yα)+} ⊆ A. Hence we get x ∈ A.This indicates 

that A is order closed. ∎ 

 

 

1.2. Ideals, Bands, and Riesz Subspaces 

 

Definition 1.2.1. A solid subspace of a Riesz space E is called an ideal. A σ-order closed ideal is 

called a σ-ideal and an order closed ideal is called a band. 

Let A and B be ideals, then their algebraic sum A + B = { a + b: a ∈ A and b ∈ B} is an ideal too.  

 

Lemma 1.2.2. An ideal A is a band if and only if {xα} ⊆ A and 0 ≤ xα↑x imply x ∈ A. Similarly, an 

ideal A is a σ-ideal if and only if {xn} ⊆ A and 0 ≤ xn↑x imply x ∈ A. 

 

Definition 1.2.3. Let A be a nonempty subset of a Riesz space E. If A is included in a smallest 

ideal EA, then it is called the ideal generated by A: EA = { x ∈ E: |x| ≤ λ∑ |𝑥𝑖|
𝑛
𝑖=1  such that ꓱx1, … 

,xn ∈ A and  λ ≥ 0}. A principal ideal of a Riesz space E is an ideal generated by a vector x. This 

ideal denoted by Ex : Ex = { y ∈ E: |y| ≤ λ|x| such that ꓱ λ ≥ 0}. 

 

Definition 1.2.4. Let E be a Riesz space. An element 0 < e ∈ E is called an order unit(or a strong 

unit) if for every x ∈ E there is a λ > 0 such that |x| ≤ λe. 

 

Definition 1.2.5. Let F be a vector subspace of a Riesz space E. F is called a vector sublattice(or 

a Riesz subspace) if x∨y ∈ F, x∧y ∈ F whenever x, y ∈ F. 

 

Let F be a Riesz subspace of a Riesz space E. If for every subset of F whose supremum(or 

infimum) exists in F, the supremum(or infimum) of the same subset exists in E and is the same 

as that in F, then the embedding of F into E preserves arbitrary suprema and infima. 
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Definition 1.2.6. Let F be a Riesz subspace of a Riesz space E. Then, 

(1) F is called regular, if the embedding of F into E preserves arbitrary suprema and infima, 

(2) F is called σ-regular, if the embedding of F into E preserves countable suprema and infima, 

(3) F is called majorizing, if for every x ∈ E there exists some y ∈ E such that x ≤ y. 

 

Theorem 1.2.7. Let F be a Riesz subspace of a Riesz space E. Then, the following statements 

are equivalent. 

(1) F is a regular subspace of E. 

(2) If {xα} ⊆ F  satisfies xα↓0 in F, then xα↓0 hols in E. 

(3) If {xα} ⊆ F  satisfies xα→x in F, then xα→x holds in E. 

 

Lemma 1.2.8. Every ideal is a regular Riesz subspace. 

 

Definition 1.2.9. Let F be a Riesz subspace of a Riesz space E. Then, 

(1) F is called order dense in E, if for all 0 < x ∈ E (0 ≤ x, x ≠ 0) there exists some y ∈ F such that 

0 < y ≤ x. 

(2) F is called super order dense in E, if for all 0 < x ∈ E there exists a sequence {xn} ⊆ F with     

0 ≤ xn↑x in E. 

From these definitions, every super order dense is order dense. 

 

Theorem 1.2.10. Every order dense Riesz subspace of a Riesz space is a regular Riesz subspace. 

 

Proof. Let F be a Riesz subspace of a Riesz space E. Then, assume that F is order dense in E and 

there is a net {xα} satisfies xα↓0 in F. If xα↓0 does not hold in E, then there exist some                       

0 < x ∈ E with 0 < x ≤ xα for every α. But since F is order dense in E, then from the definition 

there exists y ∈ F such that 0 < y ≤ x for all 0 < x ∈ E. From here 0 < y ≤ xα holds in F for every 

α, contradicting xα↓0 in F. Using Theorem 1.23., F is a regular Riesz subspace.∎ 

 

Definition 1.2.11. Let A be a nonempty subset of a Riesz space E. The disjoint complement of 

A is defined by Ad = { x ∈ E: xꓕy (|x|∧|y|=0) for every y ∈ A}. 

 

Theorem 1.2.12. Let A be a nonempty subset of a Riesz space E. The disjoint complement of 
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A, Ad is an ideal. 

 

Proof. Using the definition of ideal, we will show Ad is a solid subspace. Let x,y ∈ Ad then by 

the Definition 1.2.11. |x|∧|z|= 0 |y|∧|z|= 0 for every z ∈ A. From here, we know                                

0 ≤ |x + y|∧|z| ≤ (|x| + |y|)∧|z| ≤ |x|∧|z| + |y|∧|z| = 0 + 0 = 0. So, we get |x + y|∧|z| = 0 

and this means x + y ∈ Ad. As a result Ad is a subspace. Then, let |x| ≤ |y| for some y ∈ Ad. If                   

y ∈ Ad, then |y|∧|z|=0 for every z ∈ A. We have 0 ≤ |x|∧|z| ≤ |y|∧|z|= 0. From here 

|x|∧|z|=0. This implies x ∈ Ad. Consequently by Definition 1.1.9. Ad is solid. Hence, Ad is an 

ideal.∎ 

 

The disjoint complement (Ad)d is denoted by Add. It should be noted that A ∩ Ad = 0 and                  

A ⊆ Add. Moreover, if A ⊆ B then Bd  ⊆ Ad. 

 

Theorem 1.2.13. Every ideal A of a Riesz space E is order dense in Add. In particular, an ideal A 

is order dense in E if and only if Ad = {0}. 

 

Proof. The first proposition will be proved by contradiction. For this assume that ideal A is not 

order dense in Add. This means that there exists some 0 < x ∈ Add with no element y ∈ A 

satisfying 0 < y ≤ x. Since A is an ideal, we have |y|∧|x|= 0 for every y ∈ A. So, x ∈ Ad and from 

here x ∈ Ad ∩ Add = {0}. This is a contradiction because x > 0. Consequently A is order dense in 

Add. Now for the second proposition let ideal A is order dense in E and 0 < x ∈ Ad, then choose 

y ∈ Ad with 0 < y ≤ x and from here we get y ∈ A ∩ Ad = {0}. This is not possible because y > 0. 

So, if ideal A is order dense in E then, Ad = {0}. On the other hand let Ad = {0}, then Add = E and 

therefore A is order dense in E. ∎ 

 

Theorem 1.2.14. If A is an ideal of a Riesz space E, then the ideal A ⊕ Ad is order dense in E. 

 

Proof. If x ∈ (A ⊕ Ad), then x ∈ Ad ∩ Add = {0}. Hence, (A ⊕ Ad)d = {0}. From Theorem 1.2.13. we 

get ideal A ⊕ Ad is order dense in E.∎ 

 

Definition 1.2.15. Let E be a Riesz space. E is called Archimedean if  
1

𝑛
x↓0 for every x ∈ E+ and 

n ∈ ℕ ( if x, y ∈ E+ and nx ≤ y for every n ∈ ℕ imply x = 0). 
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Theorem 1.2.16. Let F be a Riesz subspace of an Archimedean Riesz space E. Then, the 

following statements are equivalent: 

(1) F is order dense in E. 

(2) For every x ∈ E+ we have x = sup{ y ∈ F: 0 ≤ y ≤ x}, or equally, for every x ∈ E+ there exists a 

net {xα} ⊆ F such that 0 ≤ xα↑x in E. 

 

Proof. (1) ⇒ (2) Let F be order dense in E. Assume, through contradiction, that x = sup{ y x ∈ 

F: 0 ≤ y ≤ x} is false. From here, there exists 0 < z ∈ E such that y ∈ F and 0 ≤ y ≤ x imply                      

y ≤ x – z. Choose some a ∈ F such that 0 < a ≤ z and notice that a ≤ z + (x – z) = x. Then,                        

a ≤ x – z. This means 2a = a + a ≤ (x – z) + z = x. Due to induction, we get 0 < na ≤ x for n = 1, 2, 

…,. This contradicts with the Archimedean property of E. Thus, we get x = sup{ y ∈ F: 0 ≤ y ≤ x} 

for every x ∈ E+. 

(2) ⇒ (1) If for every x ∈ E+, x = sup{ y ∈ F: 0 ≤ y ≤ x} holds in E, then clearly F is order dense in 

E. Because it is provides the definition of order dense. ∎ 

 

Definition 1.2.17. Let E and F be Riesz spaces. An operator T : E → F is called linear operator if 

T(x + y) = Tx + Ty and T(λx) = λTx for every x, y ∈ E and λ ∈ ℝ. 

A linear operator is T : E → F is called positive operator if T(E+) ⊆ F+ [or Tx ≥ 0 whenever x ≥ 0 

in E]. 

 

Definition 1.2.18. A linear operator between Riesz spaces T : E → F is called: 

(1) disjointness preserving if xꓕy implies Tx ꓕ Ty for all x, y ∈ E. 

(2) interval preserving if T[0,x] = [0,Tx] for all x, y ∈ E+. 

(3) a Riesz homomorphism (or a lattice homomorphism) if T(x∨y) = (Tx)∨(Ty) and                      

T(x∧y) = (Tx)∧ (Ty) for all x, y ∈ E. 

(4) a Riesz σ-homomorphism (or a lattice σ-homomorphism) if T is a Riesz homomorphism and 

xn→0 in E implies T(xn) → 0 in F. 

(5) a normal Riesz homomorphism (or a normal lattice homomorphism) if T is a Riesz 

homomorphism and xα→0 in E implies T(xα) → 0 in F. 

 

Theorem 1.2.19. Every Riesz homomorphism (or a lattice homomorphism) is a positive 
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operator. 

 

Proof. Assume that T : E → F is called a lattice homomorphism. Let x ≥ 0 in E. If x ≥ 0 then             

x = x∨0. From here we get Tx = T(x∨0). Using the lattice homomophism property of T we have 

T(x∨0) = T(x)∨(T0). Note that T(0) = T(0 + 0) = T(0) + T(0) = 0. So, T(x)∨(T0) = T(x)∨0 ≥ 0. This 

implies Tx ≥ 0. From the Definition 1.2.17. T is positive operator.∎ 

 

Theorem 1.2.20. Let T : E → F be a linear operator between Riesz spaces E and F. Then, the 

following statements are equivalent: 

(1) T is a lattice homomorphism. 

(2) T(x+) = (T(x))+ holds for all x ∈ E. 

(3) T(x∧y) = (Tx)∧ (Ty) holds for all x, y ∈ E. 

(4) If x∧y = 0, then Tx∧Ty = 0 for all x, y ∈ E. 

(5) |T(x)| = T(|x|) holds for all x ∈ E. 

 

Proof. 1 ⇒ 2 Using x+ = x∨0 and T(x∨y) = (Tx)∨(Ty) 

T(x+) = T(x∨0) = (Tx)∨(T0) = (Tx)∨(0) = (T(x))+ 

 

2 ⇒ 3 From the identity (9) in Theorem 1.1.2., we get x + y = x∨y + x∧y 

x + y - x∨y = x∧y  

x + y – [-(-x)∧(-y)] = x∧y 

x + y + (-x)∧(-y) = x∧y 

x + (y-x)∧(0) = x∧y 

x – (x-y)∨0 = x∧y 

x – (x – y)+ = x∧y. 

Then, T(x∧y) = T(x – (x – y)+) = T(x) – T(x – y)+ (linearity of T) 

                                                   = T(x) – (T(x-y))+   by (2) 

= Tx – (Tx – Ty)+ = Tx – (Tx – Ty)∨0 = Tx – [– (Ty – Tx)∧0] = Tx + (Ty – Tx)∧0 = Ty∧Tx = Tx∧Ty. 

 

3 ⇒ 4  Let x∧y = 0. We know T(0) = T(0 + 0) = T(0) + T(0) = 0. From (3) we have                                  

T(x∧y) = (Tx)∧ (Ty). Clearly, T(x∧y) = T(0) = 0 = (Tx)∧ (Ty). So, if x∧y = 0, then Tx∧Ty = 0. 
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4 ⇒ 5 From the identity (10) in Theorem 1.1.2. we have x = x+ - x- and x+∧ x-= 0. From (4), we 

get if x+∧ x-= 0, then T(x+)∧T(x-)= 0. Moreover, we will use the identities (12), (9) and (11) in 

Theorem 1.1.2. to prove this statement. So, 

|T(x)| = |T(x+ - x-)| = |T(x+) -T(x-)|     linearity of T 

 = T(x+)∨T(x-) - T(x+)∧T(x-)      by the identity (12) in Theorem 1.1.2. 

= T(x+)∨T(x-) – 0   by (4) 

= T(x+)∨T(x-)  

= T(x+) + T(x-) - T(x+)∧T(x-)     by the identity (9) in Theorem 1.1.2. 

= T(x+) + T(x-)  

= T(x+ + x-)      linearity of T 

= T(|x|)   by the identity (11) in Theorem 1.1.2. 

 

5 ⇒ 1 From the first identity (8) in Theorem 1.1.2., we know x∨y = 
1

2
 (x + y + |x - y|). Then, 

T(x∨y) = T[ 
1

2
 (x + y + |x - y|)]  

= 
1

2
 T[x + y + |x - y|]      linearity of T 

= 
1

2
 [Tx + Ty + T|x - y|]    linearity of T 

= 
1

2
 [Tx + Ty + |T(x – y)|]   by (5) 

=  
1

2
 [Tx + Ty + |Tx – Ty|]   linearity of T 

= Tx∨Ty     by the first identity (8) in Theorem 1.1.2. 

From the (3) in Definition 1.2.18., T is a lattice homomorphism. ∎ 

 

Definition 1.2.21. Let T : E → F be a linear operator between Riesz spaces E and F. The kernel 

of T is denoted by Ker(T) = { x ∈ E: Tx = 0 } 

 

Proposition 1.2.22. Let T : E → F be a lattice homomorphism between Riesz spaces E and F. 

The kernel of T is an ideal. 

 

Proof. We know the kernel of T: Ker(T) = { x ∈ E: Tx = 0 }. From the Definition 1.2.1., if we want 

to show that Ker(T) is an ideal, then we need to show that Ker(T) is a solid subspace. In that 

case, let x, y ∈ Ker(T). Since x, y ∈ Ker(T), Tx = 0 and Ty = 0. Then, T(x + y) = Tx + Ty = 0 + 0 = 0 
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implies x + y ∈ Ker(T). After, let α ∈ ℝ and x, ∈ Ker(T). Then, T(αx) = αTx = α.0 = 0 implies αx ∈ 

Ker(T). Consequently, Ker(T) is a subspace of E. After this, assume that |x| ≤ |y| and y ∈ Ker(T). 

From |x| ≤ |y|, we get 0 ≤ |y| - |x| 

                                          T(0) ≤ T(|y| - |x|) 

                                          0 ≤ T|y| - T|x|        (Linearity of T) 

                                          T|x| ≤ T|y|. 

From the statement (5) in Theorem 1.2.20. we have |T(x)| = T(|x|) and |T(y)| = T(|y|). Then, 

T|x| ≤ T|y| means |T(x)| ≤ |T(y)|. If y ∈ Ker(T), then Ty = 0. So, 0 ≤ |T(x)| ≤ |T(y)| = 0. This 

implies |T(x)| = 0 and then from here Tx = 0. So, x ∈ Ker(T). Clearly, from the Definition 1.1.9. 

we see that Ker(T) is solid. Therefore, Ker(T) is an ideal. ∎ 

 

Lemma 1.2.23. Let T : E → F be an onto Riesz homomorphism between Riesz spaces E and F. 

T is a normal Riesz homomorphism if and only if the kernel of T is a band of E. Likewise, T is a 

Riesz σ-homomorphism if and only if the kernel of T is a σ-ideal. 

 

Proof. From the Proposition 1.2.22. we know that Ker(T) is an ideal. Suppose that T is a normal 

Riesz homomorphism and also a net {xα} ⊆ Ker(T) satisfies 0 ≤ xα↑x in E. Since T is a normal 

Riesz homomorphism, we get T(x) = supαT(xα) = supα0 = 0, and from here x ∈ Ker(T). From the 

Lemma 1.2.2., Ker(T) is a band. For the opposite, suppose that Ker(T) is a band and also                  

0 ≤ y ≤ T(xα) holds in F for some y and for every α. And let xα↓0 in E. Since T is onto then, there 

exists some z ∈ E with T(z) = y. Later, let tα = (z+ - xα)+ for every α and notice that T(tα) = [T(z+) 

– T(xα)]+ = [y – T(xα)]+ = 0, so tα ∈ Ker(T) for every α. Now, note that 0 ≤ tα↑z+, and using that 

Ker(T) is a band we get z+ ∈ Ker(T). Therefore, y = T(z) = [T(z)]+ = T(z+) = 0. This implies T(xα) ↓0 

in F. Consequently, from (5) in Definition 1.2.18 . T is a normal Riesz homomorphism. ∎ 

 

Definition 1.2.24. A linear one-to-one lattice homomorphism between Riesz spaces is said to 

be a Riesz isomorphism (or a lattice isomorphism).  

 

Definition 1.2.25. Let E and F be Riesz spaces. E and F are called Riesz isomorphic (or lattice 

isomorphic) if there exist a lattice isomorphism from E onto F. 

 

Theorem 1.2.26. Let T : E → F be an onto Riesz homomorphism between Riesz spaces E and F. 
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Then T carries solid subsets of E to solid subsets of F.  

 

Proof. Suppose that A is a solid subset of the Riesz space E and we have |T(x)| ≤ |T(y)| for 

some y ∈ A and x ∈ E in F. Put z = [(-|y|∨x] ∧ |y| ∈ E and notice that since |z| ≤ |y| holds then 

we get z ∈ A. Moreover, T(z) = [(-|T(y)|)∨T(x)] ∧ |T(y)| = T(x). So, T(x) ∈ T(A) and thus T(A) is a 

solid subset of F. ∎ 

 

Theorem 1.2.27. Let T : E → F be a linear, one-to-one, onto operator between Riesz spaces 

Then, T is a Riesz isomorphism if and only if T and T-1 are positive operators. 

 

Proof. ⇒ Assume that T : E → F is a lattice homomorphism and let x ≥ 0 in E. Then, x ≥ 0 implies 

x = x∨0. So, we get Tx = T(x∨0) = Tx∨T0 = Tx∨0 = (Tx)+ ≥ 0. Since Tx ≥ 0, then T is positive 

operator. Moreover, T is one-to-one and onto imply T has inverse and its denoted by                      

T-1: F → E with y → T-1y. Let y ≥ 0 in F and there is a x ∈ E such that Tx = y. From here, we get 

T-1(y) = T-1(y∨0) = (T-1y)∨(T-10) = (T-1y)∨0 = (T-1y) ≥ 0. Since T-1(y) ≥ 0, then T-1 is positive 

operator. 

 

⇐ Suppose that T and T-1 are positive operators. Remember that T is a Riesz homomorphism 

if and only if T(x∨y) = (Tx)∨(Ty) for all x, y ∈ E. Let x, y ∈ E, then x ≤ x∨y imply T(x) ≤ T(x∨y) and 

y ≤ x∨y imply T(y) ≤ T(x∨y). From here, we get T(x)∨T(y) ≤ T(x∨y). For the other side, let                  

u, v ∈ F. Then, T-1(u)∨T-1(v) ≤ T-1(u∨v). We have u = Tx for some x ∈ E and v = Ty for some                

y ∈ E. Put u and v in T-1(u)∨T-1(v) ≤ T-1(u∨v). Then, we get  

T-1(Tx)∨T-1(Ty) ≤ T-1(Tx∨Ty) 

Ix ∨ Iy ≤ T-1(Tx∨Ty) 

x∨y ≤ T-1(Tx∨Ty) 

T(x∨y) ≤ TT-1(Tx∨Ty) 

T(x∨y) ≤ Tx∨Ty.  

So, T(x∨y) = (Tx)∨(Ty). This means T is a Riesz homomorphism. From Definition 1.2.24. T is a 

Riesz isomorphism.∎ 

 

 

1.3. Order Completeness and Riesz Algebra 
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Definition 1.3.1. Let A be a subset of a Riesz space E. A is called: 

(1) bounded above if there is a y ∈ E such that x ≤ y for each x ∈ A, 

(2) bounded below if there is a z ∈ E such that z ≤ x for each x ∈ A, 

(3) bounded if A is both bounded above and below. 

 

Definition 1.3.2. Let E be a Riesz space and for any two elements x, y ∈ E with x ≤ y, the set 

[x,y] = { z ∈ E: x ≤ z ≤ y } is said to be order interval(or interval). A subset A of Riesz space E is 

said to be order bounded if A is contained in an order interval. 

 

Definition 1.3.3. A Riesz space E is called:  

(1) Dedekind (or order) complete, if every nonempty subset of E which is bounded from above 

has a supremum or every nonempty subset of E which is bounded from below has an infimum. 

(2) σ-Dedekind complete if every sequence that is bounded from above has a supremum. 

 

Theorem 1.3.4. Let A be an order dense Riesz subspace of an Archimedean Riesz space E. A is 

an ideal of E if A is Dedekind complete in its own right. 

 

Proof. Suppose that 0 ≤ x ≤ y with x ∈ E and y ∈ A. Because A is order dense in E and E is 

Archimedean, by Theorem 1.2.16. there exists a net {xα} of A with 0 ≤ xα↑x in E. Then, A is 

Dedenkind complete, therefore 0 ≤ xα↑z holds in A for some z ∈ A. From Theorem 1.2.10. , A 

is a regular Riesz subspace of E and so xα↑z holds also in E. Then, x = z ∈ A. Thus A is an ideal 

of E.∎ 

 

Definition 1.3.5. Let A be a Riesz space(or vector lattice). A is said to be a Riesz algebra(lattice 

ordered algebra) if it has an associative multiplication and it is an algebra and additively x ≥ 0 

and y ≥ 0 in A imply xy ≥ 0 in A. 

 

Definition 1.3.6. Let A be a lattice ordered algebra. Then, A is called: 

(1) an f-algebra if x∧y = 0 in A, then ax∧y = xa∧y for all 0 ≤ a ∈ A, 

(2) an almost f-algebra if x∧y = 0 in A, then xy = 0 in A, 

(3) a d-algebra if x∧y = 0 in A, then ax∧ay = 0 = xa∧ya for all 0 ≤ a ∈ A. 
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Proposition 1.3.7. Let A be an f-algebra and x, y ∈ A. If xꓕy, then xy = 0. 

 

Proof. From the Definition 1.1.6. we know that xꓕy imply |x|∧|y| = 0. Let x∧y = 0, then we 

know 0 = x∧y ≤ x and 0 = x∧y ≤ y. A is an f-algebra so we get  

yx∧y = 0 (f-algebra and y ≥ 0) 

y∧yx = 0  (commutative) 

yx∧yx = 0 (f-algebra and x ≥ 0). This implies yx = 0. In addition,  

xy∧y = 0 (f-algebra and y ≥ 0) 

y∧xy = 0 (commutative)  

xy∧xy = 0 (f-algebra and x ≥ 0). This implies xy = 0.We know that, x+ ≤ |x|, x- ≤ |x|, y+ ≤ |y| and 

y- ≤ |y|. From here,  

0 ≤ x+∧y+ ≤ |x|∧|y| = 0 implies x+∧y+ = 0  

 0 ≤ x+∧y- ≤ |x|∧|y| = 0 implies x+∧y- = 0 

0 ≤ x-∧y+ ≤ |x|∧|y| = 0 implies x-∧y+ = 0 

0 ≤ x-∧y- ≤ |x|∧|y| = 0 implies x-∧y- = 0. Using the x∧y = 0 implies xy = 0, we get x+y+ = 0,            

x+y- = 0, x-y+ = 0 and x-y- = 0. From the first identity (10) in Theorem 1.1.2. we have x = x+ - x- 

and y = y+ - y-. So, xy = (x+ - x-)(y+ - y-) = x+y+ - x+y- - x-y+ + x-y- = 0.∎ 

 

Proposition 1.3.8. Let A be a f-algebra and x ∈ A. Then, xx = x2 ≥ 0. 

 

Proof. From the identity (10) in Theorem 1.1.2. we know x = x+ - x- and x+∧ x- = 0. So, using the 

proposition 1.3.7., x+∧ x- = 0 implies x+x- = 0 and x-∧ x+ = 0 implies x-x+ = 0. Moreover, we know  

0 ≤ x+ and 0 ≤ x+ imply 0 ≤ x+x+ = (x+)2 

0 ≤ x- and 0 ≤ x- imply 0 ≤ x-x- = (x-)2. 

Note that, 

x2 = xx = (x+ - x-)(x+ - x-) = x+x+ - x+x- - x-x+ + x-x- = (x+)2 + (x-)2 ≥ 0.∎ 
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RESULTS 

 

First, we described  and proved lattice identities. Then, we studied some lemmas and 

theorems of Riesz spaces. The subject of Riesz spaces, of which we have shown only a small 

part, is very broad and is used in many different sciences apart from mathematics like 

economy. 
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